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We apply a semiclassical approach to the scattering problem of a vibrational wave packet in the vicinity
of a conical intersection of electronic energy surfaces and derive analytical expressions for the scattering
matrix. The latter are valid when the scattering length that scales as

���
@
p

is small and a wave packet passes
through the scattering region with a constant velocity. The analytical results are in excellent agreement
with numerical simulations for a realistic set of parameters.

DOI: 10.1103/PhysRevLett.95.223001 PACS numbers: 31.50.Gh, 31.15.Qg, 82.20.Kh
Nonadiabatic vibrational dynamics in the vicinity of the
unavoided electronic energy surface crossing is a key to
understanding many fundamental processes in photophy-
sics and photochemistry, including radiativeless energy
relaxation and photoisomerization in (bio)molecules and
conformational dynamics of Jahn-Teller centers [1,2]. To
address this problem, advanced theoretical methods have
been developed and implemented as numerical techniques
such as ab initio electronic structure calculations [1,3],
which can be combined with semiclassical molecular dy-
namics (MD) [1,2,4,5]. Adiabatic semiclassical MD is
usually studied using the Van Vleck propagator [6] or
more advanced propagators, e.g., the Herman-Kluk [7]
combined with a powerful forward-backward propagation
method [8–10]. However, the analytical quantum mechani-
cal treatment of unavoided level crossing is limited [11].

In this Letter, we develop a semiclassical approximation
for the scattering problem in the vicinity of unavoided level
crossing resulting in compact analytic expressions. The
latter can be incorporated into large scale classical MD
simulations to account for nonadiabatic surface crossing
effects. We consider a molecule with N internal vibrational
degrees of freedom described by a vector r, whose two
electronic energy surfaces can cross. In the vicinity of the
crossing, the surfaces of interest are assumed to be well
separated from the other electronic states. The full
Hamiltonian then can be projected onto the subspace of
the two surfaces in question [Figs. 1(a) and 1(b)]. Provided
that time-reversal symmetry holds, this gives
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�U0�r� �Ux�r��̂x �Uz�r��̂z; (1)

where rj � @=@rj � Âj is a ‘‘long’’ derivative involving a
vector potential Âj�r� � �̂x�̂zAj�r�, and �̂x and �̂z are the
Pauli matrices. The vector potential induces coupling be-
tween the adiabatic surfaces [12]. U0 and Ua (a � x; z)
are diagonal and traceless potential energy components,
respectively. In the general case of a surface crossing
determined by the condition Ua�r� � 0, the intersection
surface has dimension S � N � 2. If the rank of the matrix
05=95(22)=223001(4)$23.00 22300
@Ua�r�=@rj is 2, the crossing is unavoided and is referred
to as a conical intersection (CI) [see Fig. 1(a)], in contrast
to avoided crossing when S � N � 1 [1,13]. The vibra-
tional dynamics of the Hamiltonian (1) can be exactly
described by a propagator
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where S0�x� is the scalar action due to the kinetic and
potential, U0�r�, energies, and Û�r� �Ux�r��̂x �
Uz�r��̂z [see Eq. (1)]. The main problem in computing
the path integral Ĝ is the evaluation of the time-ordered
exponential Û�x� [6]. We demonstrate that Û�x� can be
evaluated in the semiclassical @! 0 limit. This allows us
to derive analytical expressions for the generalized
Van Vleck propagator and an explicit form of the scattering
matrix. These results give an insight into a wave packet
(WP) nonadiabatic scattering while passing through the CI.

Generalizing the Van Vleck propagator to the CI, we
represent the matrix elements of Eq. (2), in the semiclas-
sical limit, as

Gmn �
S�s�mn�xmn��������������������
dmn�xmn�
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where m; n � 1; 2, and xnn is the classical trajectory that
goes from r0 to r00 on the nth adiabatic surface. Smn and dmn
are the Van Vleck action and determinant, respectively,
computed for the adiabatic dynamics [6]. The principal
contribution to Eq. (4) due to scattering on the CI is

S �s�mn�xmn� � exp
�
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Z �2
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d�U�a��xmn����
�
Umn�xmn�; (5)

where Umn is the matrix element of the time-ordered ex-
ponential [Eq. (3)], and U�a� is the adiabatic potential on
the nth (mth) adiabatic surface for � < �0 (� > �0). In
contrast to Eq. (3), the integration in Umn over � runs
from �1 to �2. The presence of the adiabatic potential
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FIG. 1 (color). (a),(b) Potential energy surfaces as a function
of transverse coordinates in the vicinity of the CI. A slice of the
initial WP at x � a with velocity v directed along the z axis is
shown in (a) the adiabatic basis set and (b) the diabatic basis set
(the diagonal components only), where red and green denote the
� 1; 0�

T and �0;  2�
T surfaces, respectively [see Eq. (7)]. (c)–

(f) Numerical simulations of the WP scattering on the CI for
gs � 10�2 represented in the diabatic basis set. The WP is
propagating in the z direction (identical in all panels). The origin
of the coordinate system indicates the position of the CI. The WP
component colors refer to the respective surfaces in (b), and the
color brightness increases with the amplitude. The distance
between the WP center and the CI center is (c) z � �215,
(d) z � 0, (e) z � 40, and (f) z � 300.
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U�a� in S�s�mn ensures cancellation of the same contribution
during the time interval ��1; �2� coming from the
Van Vleck action Smn. Therefore, Eq. (4) defines that the
pieces of the semiclassical trajectories �x�0�;x��1�� and
�x��2�;x�t�� are described by the Van Vleck propagator,
whereas the �x��1�;x��2�� piece is solely propagated by the
time-ordered exponential Umn. Note that S�s�mn depends
weakly on the choice of the boundaries x��1� and x��2�,
provided they belong to the adiabatic region.

To derive the scattering matrix, we first introduce the
coordinates �x; z;R� in the vicinity of the CI [Figs. 1(a) and
1(b)], where R parametrizes the CI surface, whereas �x; z�
are transverse coordinates orthogonal to it. In the non-
adiabatic region, the vector potential components Ax and
Az, represented in the adiabatic basis set [Fig. 1(a)], are
singular. Transformation to the diabatic basis [Fig. 1(b)]
[12] allows one to achieve Ax � Az � 0 and to represent
the traceless potential as
22300
Û�x; z;R� � �fz�R�z� fzx�R�x��̂z � fx�R�x�̂x: (6)

Naturally, the diabatic basis set will be used in the scatter-
ing region throughout this Letter. In the @! 0 limit, the
dependence of the force constants fx, fz, and fzx on R can
be omitted [14]. When a trajectory is far from the CI, the
Umn in Eq. (5) can be calculated using the adiabatic
approximation. The latter breaks down in the vicinity of
the CI characterized by the scattering length rs /

���
@
p

where, as demonstrated below, the trajectory fluctuations
are weak. Therefore, we approximate the trajectory with a
straight line, neglecting the WP velocity changes (ballistic
approximation). Without loss of generality, we choose the
z axis in the direction of the transverse velocity v. In this
case, the scattering impact parameter a is measured along
the x axis [see Figs. 1(a) and 1(b)].

The parameter which controls the adopted approxima-
tion can be obtained by partitioning arbitrary trajectories
parametrizing Û [Eq. (3)] as x�t� � a� �x�t� and z�t� �
z1 � v�t� �1� � �z�t�. Here �x�t� and �z�t� are fluctua-
tions with mean square values h�x2i � h�z2i � @��2 �
�1�=m, and m � mx �mz. The contribution of the action
accounting for the fluctuations of Û�x�t�; z�t�� to the path
integral Eq. (2) scales as f2��2 � �1�

2h�x2i=@2, where f �
fz � fzx � fx. By substituting the explicit form for h�x2i
into the scaling parameter, and setting ��2 � �1� � rs=v,

the scaling parameter becomes gs �
�������������������
f@=m2v3

p
. Here we

have used an explicit expression for the scattering length,
rs �

�����������
@v=f

p
, justified below. We emphasize that gs is a

unique dimensionless combination of the problem parame-
ters controlling the expansion of the fluctuating part of
Û�x� in Eq. (3). Provided gs � 1, the effect of the fluctua-
tions is small, and the ballistic approximation holds. Since
gs /

���
@
p

, we refer to the expansion of the full Û�x� as the
semiclassical one, where the time-ordered exponential in
the ballistic approximation is the zero order term.

To evaluate this term, we recall that Û�x� is a solution to
the first order in a time matrix differential equation which
is, in our case, precisely the Schrödinger equation. The
ballistic motion of a fast (gs � 1) WP passing through the
CI is virtually unaffected by the potential. In this case, the
rotation of a two-component vector ��r; �� by the potential
Û�x� is the primary effect. Therefore, we can reduce the
Schrödinger equation i@�@�=@���Ĥ� to i@�@�=@���
Û�r��. Here the kinetic and scalar parts of the
Hamiltonian are omitted, and the position of the WP is
assumed to have a straight line trajectory. Furthermore, the
time � can be replaced by �z� z0�=v, and, finally, the
dynamics of �z� is given by

i
d
dl

��l� �
1

2
���̂x � l�̂z���l�; � �

 1

 2

� �
; (7)

where the dimensionless quantity l � �
���
2
p
=rs��fzxa=fz �

z0 � v�� parametrizes the trajectories, and the dimension-
less impact parameter is � �

���
2
p
fxa=fzrs. Note that they
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both are normalized by rs. Equation (7) can be solved
analytically on the interval �l1; l2� giving rise to the time-
evolution operator

Û�l2; l1� �
ud�l2; l1� uo�l2; l1�
� �uo�l2; l1� �ud�l2; l1�

� �
; (8)

where the diagonal and off-diagonal matrix elements are

ud � exp����2=8���2D��1��2�D ���1� ��1�=4

�D ��� ��2�D���1��; (9)

uo � � exp����2=8� i3�=4��D��1��2�D ��� ��1�

�D ��� ��2�D��1��1��=2; (10)

respectively, with � � le�i�=4 and � � i�2=4, and the bar
denotes the complex conjugate. Here D���� is the para-
bolic cylinder function [15].

Because of the weak dependence of the propagator on
the boundaries l1 and l2, the scattering matrix Û�1;�1�
describing the dynamics in the vicinity of the CI is given by
the leading terms in the asymptotic expansion of Eqs. (9)
and (10):

ud�1;�1� �
������
Pd

p
e�i��2��1�; (11)

uo�1;�1� �
������
Po

p
e�i��2��1��i����; (12)

where Pd � exp����2=2� (Po � 1� Pd) is the probabil-
ity of a WP to stay on (to be scattered to) a diabatic surface
after passing the scattering region. Note that, in the adia-
batic basis set, Pd describes the scattering probability
between the adiabatic surfaces [compare Figs. 1(a) and
1(b)] which resembles the Landau-Zener expression ex-
tensively used in the avoided surface crossing case [13].
The ‘‘adiabatic’’ phase factor �i � �l

2
i � �

2 lnjlij�=4 de-
pending on the initial (i � 1) and final (i � 2) trajectory
points has two terms. The quadratic one causes fast oscil-
lations of a WP, and the other, slowly varying logarithmic
term, induces the impact parameter dependent shift of the
oscillation period. Finally, the path independent ‘‘nonadia-
batic’’ phase shift is ���� � �=4� arg���i�2=4�, where
��z� is the Euler gamma function.

Equations (11) and (12) describe only forward scatter-
ing. The backscattering inducing the quantum interference
of incoming and reflected WPs occurs within the scattering
region rs and is due to O�1=l� terms in the asymptotic
expansion of Eqs. (9) and (10). Furthermore, the probabil-
ity Pd is independent of l, indicating that the WP scatters
on the length scale jlj � 1, i.e., z� rs, and Pd also decays
exponentially on the length scale a� rs. This justifies the
physical meaning of rs.

To verify the proposed approximation, we have simu-
lated WP scattering on the CI by solving the time-
dependent Schrödinger equation numerically. We set @ �
m � fx � fz � 1 and fzx � 0, leaving v (WP velocity) as
the only parameter controlling the scattering regime, i.e.,
gs � v�3=2 and rs � v1=2. As illustrated in Figs. 1(a) and
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1(b), the initial Gaussian WP (with the widths � � �x �
�z) is assumed to be excited to the diabatic surface above
the CI, i.e., ��x; z� � �0;  2�

T at z � z1 < 0 and jz1j 	 rs.
Below, scattering regimes in the range 10�4 
 gs 
 10�1

are considered.
Figures 1(c)–1(f) shows snapshots of a WP scattering on

the CI for g � 10�2. The initial (e.g., photoexcited) WP
with a broad (� � 12) Gaussian profile [Fig. 1(c)] is
launched far from the CI, where the adiabatic [Fig. 1(a)]
and diabatic [Fig. 1(b)] surfaces coincide with good accu-
racy. The WP component  2 remaining on the same dia-
batic surface after passing the CI becomes the scattered one
from the upper to the lower adiabatic surface at z2 [com-
pare Figs. 1(a) and 1(b)]. In the diabatic basis set, the
scattered WP [Figs. 1(d)–1(f)] should remain green after
passing the CI. Figure 1(d) clearly shows that the scattering
takes place within a small region of rs � 4:6, and the
fringes due to the quantum interference are resolved in
the vicinity of rs. Passing through the CI results in for-
mation of a narrow [green strip in Fig. 1(e)] scattered WP
and splitting of the remaining one into two [red blobs in
Fig. 1(f)].

By propagating the WPs for different gs, the probabil-
ities Pd and Po � 1� Pd can be calculated numerically as
functions of the impact parameter a and compared with
Eqs. (8), (11), and (12). Taking into account negligible
variation of the incoming WP amplitude on the rs, the
profile of

R
dzj 2�x; z�j

2 at z2 	 rs should be proportional
to Pd, i.e., has to be a Gaussian function of x � a.
Figure 2(a) compares numerical and analytical results for
the profiles of the scattered WPs for 10�4 
 gs 
 10�1. In
the simulations, each WP approaches the scattering region
with the velocity associated with gs and the width � � 2.
Therefore, scattering probability is fully determined by the
scattering radius and depends solely on the WP velocity.
The graph shows that all scattered WPs are Gaussians.

To make connections with experimentally observed
quantities, we have calculated quantum yield (QY) asso-
ciated with the CI scattering and defined asR
dxdzj 2�x; z� z2�j

2=
R
dxdzj 2�x; z� z1�j

2. This quan-
tity represents general trends in the behavior of nonradia-
tive decay or photoisomerization rate as a function of
photoexcitation energy. The inset in Fig. 2(a) compares
theoretical predictions and numerical calculations of QY
for the parameters adopted in Fig. 2(a). Decrease in gs
corresponds to the increase of the scattering radius and
WP’s photoexcitation energy. Subsequently, QY saturates
for small gs. Figure 2(a) clearly shows that the proposed
approximation works extremely well for gs & 10�2. For
10�2
gs<10�1, the theory underestimates the Gaussian
WP width. As a result, theoretical QY values underesti-
mate the numerics for 5%–10%. This discrepancy could
be corrected by taking into account quantum corrections
(�gns , n � 1; 2; . . . ) to the ballistic approximation.

We next estimate gs values for a practically interesting
range of parameters. Usually, the displacements x and z are
1-3
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FIG. 2 (color online). (a) Asymptotic amplitude of the WPs
transmitted through the CI. Points denote numerical results; solid
lines represent analytical results [Eq. (11)] adjusted to the WP
spreading while propagating away from the scattering region.
The inset shows associated quantum yield. (b) Proposed scheme
for classical large scale MD incorporating analytic treatment of
nonadiabatic unavoided surface crossings.
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represented by vibrational normal modes with typical en-
ergies �� 1000 cm�1. In this case, the quantity f should
be rescaled as 	 �

������������������
@=4��m

p
f� 0:1 eV (based on the

data for pyrazine [1]). Then parameter gs becomes
�h�	2=E3

k�
1=4, where Ek is the WP kinetic energy. If the

WP is photoexcited to 0.5 eV or higher above the CI, then
gs & 10�1 (modest estimate), and our approximation
holds.

The asymptotic expressions (11) and (12) could have
several practical implications for large scale MD simula-
tions as we illustrate in Fig. 2(b). In the adiabatic regions, a
classical (or semiclassical) treatment of the vibrational
degrees of freedom is satisfactory. Therefore, photoexcited
dynamics away from CIs can be modeled by running an
ensemble of classical trajectories. If some trajectories ap-
proach the explicitly defined scattering region rs around a
CI, the dynamics becomes nonadiabatic and should be
treated quantum mechanically. According to our theory,
instead of numerically demanding (often intractable) quan-
tum calculations, we propose propagating an ensemble of
classical trajectories through rs using analytic equa-
tions (8), (11), and (12) with input parameters from clas-
sical MD data. This approach is widely adopted for the
case of fast passages through a simpler case of avoided
crossing where the Landau-Zener theory works. Since our
results are similar in spirit to the latter theory, their general-
22300
ization to far more complicated cases of CIs should be
efficient and universal.

In conclusion, we have derived analytical expressions
for the scattering matrix in the vicinity of the CI within the
semiclassical approximation, assuming that the scattering
length that scales as

���
@
p

is small and the ballistic approxi-
mation holds. These analytical results agree well with
direct numerical simulations for gs & 10�1, which is con-
sistent with a realistic range of molecular parameters. The
obtained asymptotic expressions for the scattering proba-
bilities can accelerate large scale MD simulations of (bio)-
molecular clusters to account for nonadiabatic CI effects.
The scattering amplitudes [Eqs. (11) and (12)] also provide
a microscopic picture of the topological Berry phase [16]
formation which may be detected spectroscopically. In the
adiabatic (contrary to the diabatic) basis set, the scattered
WP components that stay on the same adiabatic surface
have different signs at positive and negative values of an
impact parameter a, whereas the wave function passes zero
at a � 0.
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